

Assessment of the Delivery Performance of a Novel Soft Mist Inhaler Using a Pre-Filled Syringe Based Container Closure System

Pragathi Kamale Gurumurthy¹, Knut Sommerer², Imco Sibum¹, Nicolas A. Buchmann¹ & Bernhard Müllinger¹

¹Resyca BV, Enschede, Netherlands, ²Actarmo Medical GmbH, Gauting, Germany

Key Message

Biological drugs are primarily delivered as water-based liquid formulations and require efficient delivery platforms when being delivered via the inhalation route. The soft mist inhaler tested within this study uses a container closure system that is compatible with biological drug products and achieves a high lung deposition of about 63%.

Background

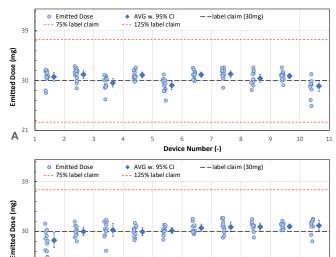
- There is a necessity for inhalers capable of delivering larger amounts of liquid drugs and providing container closure systems that allow aseptic filling compatible with available technologies like pre-filled syringes or cartridges.
- Soft Mist Inhalers (SMIs) deliver liquid formulations through a slowmoving cloud of aerosol generated solely by mechanical energy.
- Novel SMIs are now being developed for larger molecules and biological drug products that require the delivery of higher amounts of the drug.
- The objective of this study is to characterize the delivery performance and lung deposition efficiency of Resyca's soft mist inhaler.

Methods

- The pre-filled syringe inhaler (PFSI) is a mechanical, pocket-sized, portable device that utilises a disposable cartridge to provide 10 to 30 metered dosages.
- The multi-dose cartridge is based on a pre-filled glass syringe containing the drug solution, to which a spray nozzle and a mouthpiece are attached.
- The formulation is aerosolised by the micro spray nozzle with a low shear force by means of Rayleigh breakup. This technique allows the generation of nearly mono-disperse droplets under very low shear condition, ideally suited for sensitive biological formulations.

- Figure 1: Pre-filled syringe inhaler (PFSI[™]) with multi-use cartridge
 Device under test: PFSI[™] (Resyca BV, Enschede, Netherlands), using a cartridge filled with 2,5% saline with a target dosing volume of 30 μL.
- Measurement of particle size: Malvern Spraytec laser diffraction, emitted mass and delivered dose uniformity: DUSA and weight loss; Both at 30 L/min inspiratory flow rate.
- Lung deposition modelled using Mimetikos Preludium V 1.1.7 (Emmace) using the parameters as described in Table 1.

Table 1: Parameters for lung deposition modeling


Parameter	PFSI™	
Model	Weibel A	
Tidal breath volume	reath volume 1000 mL	
Inspiratory flow rate	30 L/min	
Flow pattern	rectangular	
Breath hold	1 sec	
I/E ratio	1:1	
Bolus volume	950 mL	
Delay volume	50 mL	

Results

Table 2: Particle size data at 30 L/min

Parameter	VMD (µm)	GSD (-)	FPF <5μm (%)
PFSI	4.3 (0.3)	1.4 (0.04)	65.2 (6.2)

- Mean VMD, GSD and FPF (Percentage emitted aerosol < 5 μ m), is presented in Table 2.
- Average emitted metered is 30.4 mg (95% CI, 30.18 30.65 mg).
- The device exhibits good device-to-device and shot-to-shot variability with all doses falling within the 75 – 125% interval (Figure 2).
- The total modelled lung deposition is 63% (Figure 3).

B 1 2 3 4 5 6 7 8 9 10 11

Shot Number (-)

Figure 2: Distribution of individual and mean (95% CI) emitted doce: (A) inter-

Figure 2: Distribution of individual and mean (95% CI) emitted dose; (A) interdevice comparison; (B) Shot-to-shot comparison for all devices.

Figure 3: Modelled regional lung deposition in the % of delivered dose.

Conclusion

Particle size, emitted dose and inhalation flow rate play a crucial role in determining the delivery efficiency and the lung deposition. Test results from aerosol characterisation of the PFSI device show a volumetric median diameter of 4.3 μm with a narrow size distribution (GSD of 1.4) and FPF of 65.2%. Results from emitted dose measurements confirm that the targeted dose of 30 mg was reached with 30.4 \pm 0.24 mg over 10 dose actuations and across different devices. The uniformity of single doses fulfils dose uniformity requirements are in the range of 75%–125% of the label claim. Regional respiratory lung deposition modelling shows a high deposition in the lung and the lung periphery of 62.9% and 31.9%, respectively.

- Komalla V, Wong CY, Sibum I, Muellinger B, Nijdam W, Chaugule V, Soria J, Ong HX, Buchmann NA, Traini D: Advances in soft mist inhalars. Expert Opinion on Drug Delivery 2023: 10: pp.1 – 6.
- D: Advances in soft mist inhalers, Expert Opinion on Drug Delivery 2023; 10: pp 1 6.
 B. Olsson and S. C. Kassinos. On the Validation of Generational Lung Deposition Computer Models Using Planar Scintigraphic Images: The Case of Mimetikos Preludium, J. of Aerosol Medicine and Pulmonary Drug Delivery 202134:2

