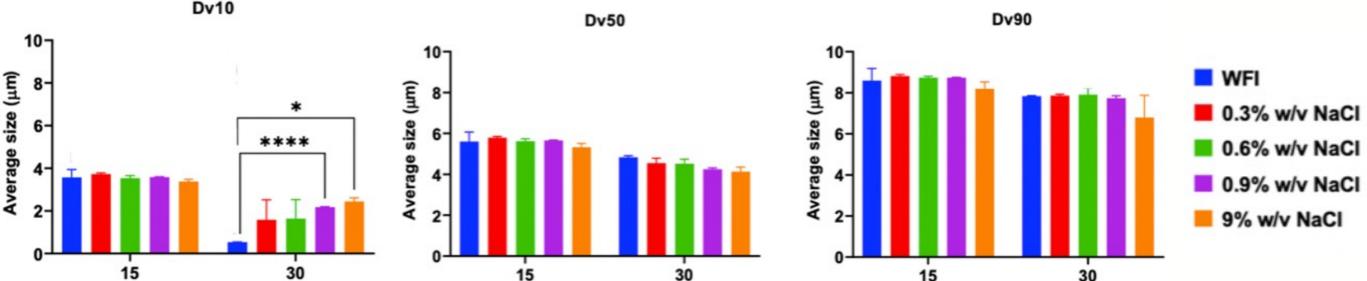
Influence of Fluid Physiochemical Properties on Aerosolization Performance of a Novel Soft Mist Inhaler

Varsha Komalla¹, Imco Sibum², Bernhard Muellinger², Wietze Nijdam³, Vishal Chaugule⁴, Julio Soria⁴, Nicolas A. Buchmann², Hui Xin Ong^{1,5}, and D. Traini1^{1,5}

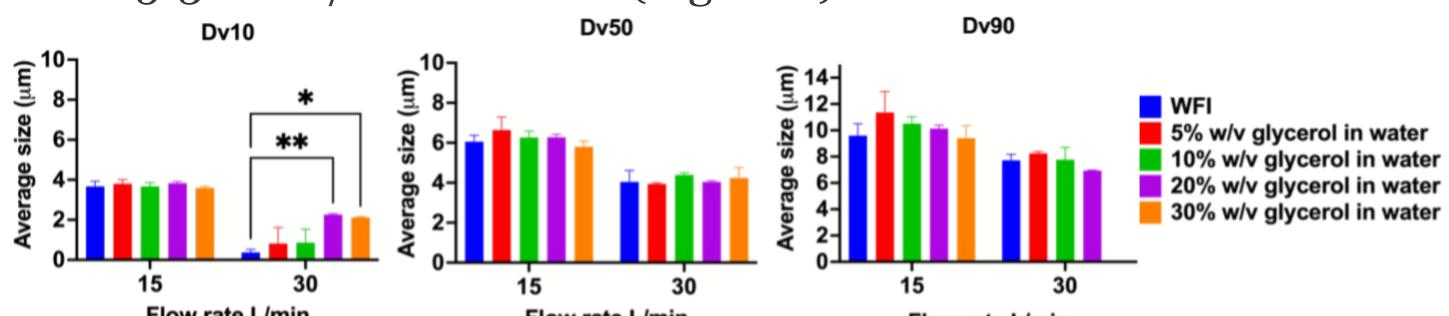
¹Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia

INTRODUCTION

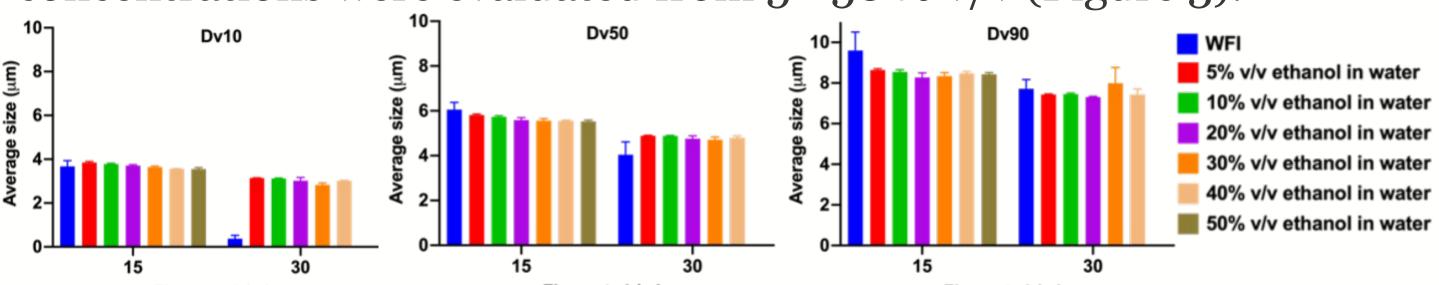

- Soft mist inhalers (SMIs) are propellant-free inhalers that are gaining interest in the delivery of drugs, especially proteins and biologics, due to the low shear stress [1] they produce during aerosolization and low carbon footprint [2].
- The effectiveness of the SMI inhalation therapy relies on many factors, including the device manufacture and physicochemical properties of the inhalation solution [3].
- The Aim of the study was to evaluate the influence of fluid physiochemical properties on droplet size distribution using the PulmosprayTM SMI device, (Resyca B.V, Enschede, Netherlands).
- Specifically, we will evaluate the following properties: (1) fluid viscosities, (2) ionic strength and (3) surface tension of different fluid mixtures and study their particle size distribution at two different inhalation flow rates.

EXPERIMENTAL METHODS

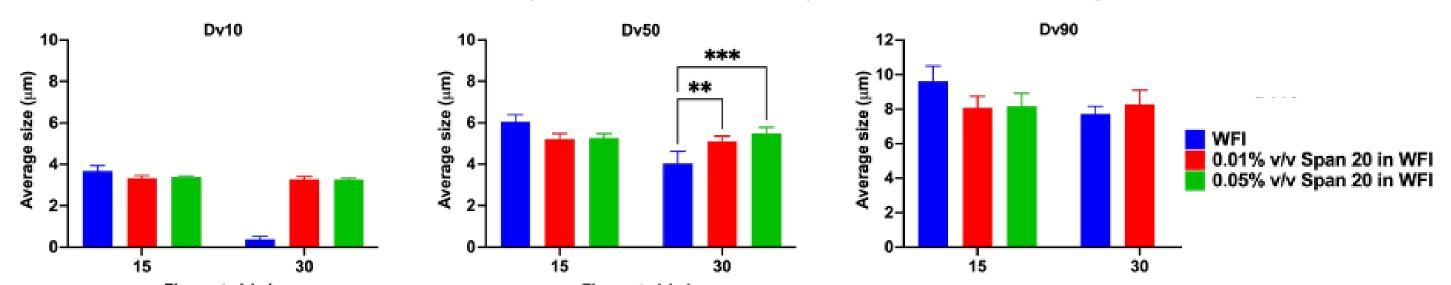
- A series of fluid mixtures with variable viscosities, ionic strengths and surface tension were prepared by mixing different WFI with concentrations of 0.3%, 0.6%, 0.9%, 9% w/v of NaCl, glycerol 0, 5%, 10%, 20% and 30% w/v, ethanol 5%, 10%, 20%, 30%, 40%, and 50% v/v and Span 20 (0.01% and 0.05% v/v).
- These fluids were characterized for their corresponding physiochemical properties and their effect on aerosol size distribution using the PulmosprayTM SMI device.
- In situ, real-time measurement of the droplet size distribution was performed by laser diffraction using a Spraytec particle sizer (Malvern Instruments, Worcestershire, UK).
- The flow rate through the Spraytec was set at 15 (low) or 30 (high) L/min and calibrated using a flow meter, with the device in-line during setup.


RESULTS

To vary the ionic strength of the solution, varying concentrations of NaCl from 0.3 to 9% w/v were evaluated (Figure 1).


Figure 1. Dv10, Dv50 and Dv90 aerosol particle size data of 0.3-9% w/v NaCl in WFI sprayed using Pulmospray and particle size distribution curves at flow rates of 15 and 30 L/min.

To evaluate the effect of viscosity, varying concentrations of glycerol from 5-30 % w/v were tested (Figure 2).


Figure 2. Dv10, Dv50 and Dv90 aerosol particle size data of 5-30% w/v glycerol in WFI sprayed using Pulmospray and particle size distribution curves at flow rates of 15 and 30 L/min.

To modify the surface tension of the solution, different ethanol concentrations were evaluated from 5 - 50 % v/v (Figure 3).

Figure 3. Dv10, Dv50 and Dv90 aerosol particle size data of 5-50% w/v ethanol in WFI sprayed using Pulmospray and particle size distribution curves at flow rates of 15 and 30 L/min.

To investigate the impact of surface tension, Span 20 was used at a concentration of 0.01 and 0.05 % v/v in WFI while keeping the other factors such as osmolality and viscosity constant (Figure 4).

Flow rate Limin
Flow rate Limi

DISCUSSION

- Results demonstrate that reliable aerosol generation over a wide range of viscosity and surface tension can be achieved with the PulmosprayTM device without a significant effect on the quality of the generated aerosol.
- Irrespective of physicochemical properties, median diameter (Dv50) ranges between 5 6 μ m for flow rates of 15L/min and between 4 5 μ m for flow rates up to 30L/min, indicating an aerosol quality suitable for efficient inhalation.
- In general, the PulmosprayTM device produces smaller aerosol droplets at higher flow rates compared to lower flow rates across the different solution mixtures.
- This is attributed to the mechanisms of aerosol generation relying on the combination of airflow through the device interacting with the fluid properties and the physical droplet generation by Rayleigh breakup [2].
- The characteristic of aerosol generation and resulting lung deposition from the PulmosprayTM SMI is independent of the physiochemical properties of the inhalation solution and the inhalation flow rate.

CONCLUSION

• In conclusion, the single-use PulmosprayTM SMI device is an efficient inhaler for the delivery of drug products to the lungs with varying physiochemical properties of the inhalation solution and inspiratory flow rates.

ACKNOWLEDGEMENT

This work was funded by an Australian Research Council grant: LP190100917.

REFERENCES

[1] van Rijn, C, Vlaming, KE, et al. Low energy nebulization preserves integrity of SARS-CoV-2 mRNA vaccines for respiratory delivery, Sci Rep 2023, 31;13:8851

[2] Komalla, V.; Wong, C. Y. J.; et al., Advances in soft mist inhalers. Expert Opinion on Drug Delivery 2023, 1-16.

[3] Broniarz-Press, L.; Sosnowski, T. R.; et al., The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler. Int J Pharm 2015, 485 (1), 41-49.

²Resyca B.V., Enschede, the Netherlands

³Medspray B.V., Enschede, the Netherlands

⁴Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia

⁵Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia